Result data

Overview Structs

Overview Functions

ResultData

Constructors

GEMS.ResultDataMethod
ResultData(sim::Simulation; style::String = "")

Create a ResultData object using a Simulation and the name of a ResultDataStyle, that describes the level of detail for the fields to be calculated. This constructor instantiates a default PostProcessor for the passed simulation object. If you want to manually configure the PostProcessor, you need to instantiate it first and pass the PostProcessor to the ResultData constructor instead. Post Processing requires a simulation to be done.

GEMS.ResultDataMethod
ResultData(postProcessor::PostProcessor; style::String="")

Create a ResultData object using a PostProcessor and a key, that describes the level of detail for the fields to be calculated. Post Processing requires a simulation to be done.

GEMS.ResultDataMethod
ResultData(postProcessors::Vector{PostProcessor}; style::String="", print_infos::Bool = false)

Create a vector ResultData objects using a vector of associated PostProcessor objects and a key, that describes the level of detail for the fields to be calculated. Post Processing requires a simulation to be done. It supresses the usual info outputs that are being made during the ResultData generation. If you want to enable them, pass print_infos = true.

GEMS.ResultDataMethod
ResultData(sim::Vector{Simulation}; style::String = "", print_infos::Bool = false)

Create a vector ResultData objects using a vector of Simulation objects and the name of a ResultDataStyle, that describes the level of detail for the fields to be calculated. If you want to manually configure the PostProcessor, you need to instantiate it first and pass the PostProcessor to the ResultData constructor instead. Post Processing requires a simulation to be done. It supresses the usual info outputs that are being made during the ResultData generation. If you want to enable them, pass print_infos = true.

GEMS.ResultDataMethod
ResultData(batch::Batch; style::String = "", print_infos::Bool = false)

Create a vector ResultData objects using a Batch object and the name of a ResultDataStyle, that describes the level of detail for the fields to be calculated. If you want to manually configure the PostProcessors, you need to instantiate them first and pass the PostProcessors to the ResultData constructor instead. Post Processing requires a simulation to be done. It supresses the usual info outputs that are being made during the ResultData generation. If you want to enable them, pass print_infos = true.

Functions

GEMS.aggregated_compartment_periodsFunction
aggregated_compartment_periods(rd::ResultData)

Returns the DataFrame with disease state durations (normalized). Look up the PostProcessor docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.allemptyFunction
allempty(f::Function, rds::Vector{ResultData})

Returns true if the provided function returns an empty dictionary for all ResultData objects in the provided vector.

GEMS.attack_rateMethod
attack_rate(rd::ResultData)

Returns the simulation's attack rate. It's total infections divided by population size. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.compartment_fillMethod
compartment_fill(rd::ResultData)

Returns the compartment_fill infections over time. Look up the PostProcessor docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.compartment_periodsMethod
compartment_periods(rd::ResultData)

Returns the DataFrame with duration of exposed and infectious states for all infections. Look up the PostProcessor docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.config_fileMethod
config_file(rd::ResultData)

Returns the path to the config file

GEMS.config_file_valFunction
config_file_val(rd::ResultData)

Returns the parsed config file. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.cpu_dataMethod
cpu_data(rd::ResultData)

Returns the processor information (not available for ARM Macs)

GEMS.cumulative_casesMethod
cumulative_cases(rd::ResultData)

Returns the cumulative infections over time. Look up the PostProcessor docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.cumulative_deathsMethod
cumulative_deaths(rd::ResultData)

Returns the cumulative deaths over time. Look up the PostProcessor docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.cumulative_disease_progressionsMethod
cumulative_disease_progressions(rd::ResultData)

Returns the DataFrame with cumultive number of individuals in certain disease states per tick. Look up the PostProcessor docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.cumulative_quarantinesMethod
cumulative_quarantines(rd::ResultData)

Returns the DataFrame with number of isolated individuals per tick Look up the PostProcessor docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.cumulative_vaccinationsMethod
cumulative_vaccinations(rd::ResultData)

Returns the cumulative vaccinations over time. Look up the PostProcessor docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.customloggerMethod
customlogger(rd::ResultData)

Returns the DataFrame of the Simulation object's internal custom logger. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.data_hashMethod
data_hash(rd::ResultData)

Returns a SHA1 hash value for the ResultData object.

GEMS.dataframesMethod
dataframes(rd::ResultData)

Returns the dataframes of result data. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.deathsMethod
deaths(rd::ResultData)

Returns the deaths DataFrame joined with individuals' attributes. Look up the PostProcessor docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.detected_tick_casesMethod
detected_tick_cases(rd::ResultData)

Returns the detected cases per tick DataFrame. Look up the PostProcessor docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.detection_rateMethod
detection_rate(rd::ResultData)

Returns the fraction of detected infections. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.effectiveRMethod
effectiveR(rd::ResultData)

Returns the Effective R value over time DataFrame. Look up the PostProcessor docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.execution_dateMethod
execution_date(rd::ResultData)

Returns the timestamp of result data generation. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.execution_date_formattedFunction
execution_date_formatted(rd::ResultData)

Returns the (formatted for report) timestamp of result data generation. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.exportJLDMethod
exportJLD(rd::ResultData, directory::AbstractString)

Exports the ResultData object as a JLD2 file, storing it in the specified directory.

GEMS.final_tickMethod
final_tick(rd::ResultData)

Returns the tick counter at the end of the simulation run. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.free_mem_sizeMethod
free_mem_size(rd::ResultData)

Returns the available system memory

GEMS.GEMS_versionMethod
GEMS_version(rd::ResultData)

Returns the GEMS version this ResultData object was generated with. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.git_branchMethod
git_branch(rd::ResultData)

Returns the current git branch.

GEMS.git_commitMethod
git_commit(rd::ResultData)

Returns the current git commit.

GEMS.git_repoMethod
git_repo(rd::ResultData)

Returns the current git repository.

GEMS.hashesMethod
hashes(rd::ResultData)

Returns the dataframes of result data. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.tick_hosptitalizationsMethod
tick_hosptitalizations(rd::ResultData)

Returns the tests per tick DataFrame. Look up the PostProcessor docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.household_attack_ratesMethod
household_attack_rates(rd::ResultData)

Returns householdattackrates DataFrame. Look up the PostProcessor docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.idMethod
id(rd::ResultData)

Returns the unique identifer of the ResultData object.

GEMS.import_resultdataFunction
import_resultdata(filepath::String)

Import the ResultData object from a jld2 file. Returns the ResultData object.

import_resultdata(filepath::String, config::Dict=Dict())

Import the ResultData object from a jld2 file. Also accepts a config dictionary that includes the fields that should be obtained from the file. If there are fields in the config file that are not yet present in the ResultData object the creation of these fields is being attempted. If there are fields present in the ResultData object that are not in the config file, these fields are ommited. Providing an empty config dictionary will lead to the generation of all fields.

GEMS.infectionsMethod
infections(rd::ResultData)

Returns the infection DataFrame joined with individuals' attributes. Look up the PostProcessor docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.infections_hashMethod
infections_hash(rd::ResultData)

Returns a SHA1 hash value for the infections DataFrame based on the tick, id_a, and id_b column. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.infoMethod
info(rd::ResultData)

Prints info about available fields in the ResultData object.

GEMS.initial_infectionsMethod
initial_infections(rd::ResultData)

Returns the number of individuals who are marked as infected during initialization. This happens before the actual simulation run. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.julia_versionMethod
julia_version(rd::ResultData)

Returns the Julia version that was used to generate this result data object. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.kernelMethod
kernel(rd::ResultData)

Returns the system kernel information Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.labelMethod
label(rd::ResultData)

Returns the lable of the simulation run. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.meta_dataMethod
meta_data(rd::ResultData)

Returns the meta_data dictionary of the ResultData. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.model_sizeMethod
model_size(rd::ResultData)

Returns the size of the simulation model in memory.

GEMS.number_of_individualsMethod
number_of_individuals(rd::ResultData)

Returns the total number of individuals in the population model. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.observed_RMethod
observed_R(rd::ResultData)

Returns the observed reproduction number estimation DataFrame. Look up the PostProcessor docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.pathogensMethod
pathogens(rd::ResultData)

Returns an array of pathogen parameters. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.population_fileMethod
population_file(rd::ResultData)

Returns the path to the population file Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.population_paramsMethod
population_params(rd::ResultData)

Returns parameters that were used to generate the population. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.population_pyramidMethod
population_pyramid(rd::ResultData)

Returns the DataFrame required to plot population pyramid (age, sex, count) Look up the PostProcessor docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.population_sizeMethod
population_size(rd::ResultData)

Returns the size of the population model in memory.

GEMS.region_infoMethod
region_info(rd::ResultData)

Returns a Dataframe with population size and area per municiaplity (if model is geolocalized). Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.rolling_observed_SIMethod
rolling_observed_SI(rd::ResultData)

Returns the rolling observed serial interval DataFrame. Look up the PostProcessor docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.setting_dataMethod
setting_data(rd::ResultData)

Returns a DataFrame containing information on all setting types. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.setting_sizesMethod
setting_sizes(rd::ResultData)

Returns a Dictionary containing information on all setting sizes. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.sim_dataMethod
sim_data(rd::ResultData)

Returns the sim_data of result data. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.someemptyFunction
someempty(f::Function, rds::Vector{ResultData})

Returns true if the provided function returns an empty dictionary for at least one of the ResultData objects.

GEMS.start_conditionMethod
start_condition(rd::ResultData)

Returns the StartCondition object the simulation was initialized with. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.stop_criterionMethod
stop_criterion(rd::ResultData)

Returns the StopCriterion object of the simulation. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.strategiesMethod
strategies(rd::ResultData)

Returns the strategies included in the simulation. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.symptom_triggersMethod
symptom_triggers(rd::ResultData)

Returns the symptom triggers included in the simulation. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.system_dataMethod
system_data(rd::ResultData)

Returns the system_data of result data. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.testsMethod
tests(rd::ResultData)

Returns the tests DataFrame . Look up the PostProcessor docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.testtypesMethod
testtypes(rd::ResultData)

Returns the test types included in the simulation. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.threadsMethod
threads(rd::ResultData)

Returns the number of threads this Julia instance was started with.

GEMS.tick_casesMethod
tick_cases(rd::ResultData)

Returns the infections per tick DataFrame. Look up the PostProcessor docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.tick_cases_per_settingMethod
tick_cases_per_setting(rd::ResultData)

Returns the tests per tick DataFrame. Look up the PostProcessor docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.tick_deathsMethod
tick_deaths(rd::ResultData)

Returns the deaths per tick DataFrame. Look up the PostProcessor docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.tick_generation_timesMethod
tick_generation_times(rd::ResultData)

Returns the generation times per tick DataFrame. Look up the PostProcessor docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.tick_pooltestsMethod
tick_pooltests(rd::ResultData)

Returns the pool tests per tick DataFrame. Look up the PostProcessor docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.tick_serial_intervalsMethod
tick_serial_intervals(rd::ResultData)

Returns the serial intervals per tick DataFrame. Look up the PostProcessor docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.tick_testsMethod
tick_tests(rd::ResultData)

Returns the tests per tick DataFrame. Look up the PostProcessor docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.tick_unitMethod
tick_unit(rd::ResultData)

Returns the unit of time that one tick corresponds to. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.tick_vaccinationsMethod
tick_vaccinations(rd::ResultData)

Returns the vaccinations per tick DataFrame. Look up the PostProcessor docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.time_to_detectionMethod
time_to_detection(rd::ResultData)

Returns time to detection DataFrame. Look up the PostProcessor docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.timer_output!Method
timer_output!(rd::ResultData, timer_output::TimerOutput)

Sets the TimerOutput object for a ResultData object

GEMS.timer_outputMethod
timer_output(rd::ResultData)

Returns the TimerOutput object used to supply debug report with execution time information Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.total_infectionsMethod
total_infections(rd::ResultData)

Returns the row count of the PostProcessors' infections-DataFrame. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.total_quarantinesMethod
total_quarantines(rd::ResultData)

Returns the total quarantined agent over the course of the simulation. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.total_testsMethod
total_tests(rd::ResultData)

Returns a dictionary with the the total number of tests per TestType. Returns an empty dictionary if the data is not available in the input ResultData object.

GEMS.word_sizeMethod
word_size(rd::ResultData)

Returns the system word size.

ResultDataStyle

Constructors

GEMS.ResultDataStyleType
ResultDataStyle

Abstract type, whose implementations define the structure of a ResutltData object.

GEMS.DefaultResultDataType
DefaultResultData <: ResultDataStyle

The default style for ResultData objects. It contains all that can currently be calculated in the PostProcessor. Therefore, it is both, the most comprehensive and computationally intensive (memory & runtime) option.

Fields

  • data::Dict{String, Any}:

    • meta_data::Dict{String, Any}

      • timer_output::TimerOutput: TimerOutput object
      • execution_date::String: Time this ResultData object was generated
      • GEMS_version::VersionNumber: GEMS version this ResultData object was generated with
      • config_file::String: Path to the config file
      • config_file_val::Dict{String, Any}: Deep copy of the supplied TOML config file
      • population_file::String: Path to the population file
      • population_params::Dict{String, Any}: Parameters used to generate population
    • sim_data::Dict{String, Any}

      • label::String: Label of this simulation run (needed for plotting)
      • final_tick::Int16: Tick counter at the end of the simulation run
      • number_of_individuals::Int64: Total number of individuals in the population model
      • initial_infections::Int64: Number of initial infected individuals
      • total_infections::Int64: Row count of the PostProcessor's infections DataFrame
      • attack_rate::Float64: Fraction of overall infected individuals
      • setting_data::DataFrame: DataFrame containing information on all setting types
      • setting_sizes::Dict{Any, Any}: Dictionary containing the setting sizes distributions for all included settingtypes
      • region_info::Dataframe: Municipality population size and area (if geolocalized model is used)
      • pathogens::Vector{Pathogen}: Array of pathogen parameters
      • vaccine::Vaccine: Vaccine parameter [CURRENTLY DEACTIVATED]
      • vaccination_strategy::VaccineScheduler: Vaccination strategy used in this model [CURRENTLY DEACTIVATED]
      • tick_unit::String: Unit of time that one tick corresponds to
      • start_condition::StartCondition: Initial setup of the simulation
      • stop_criterion::StopCriterion: Termination conditions
      • strategies::Vector{Strategy}: Intervention strategies
      • symptom_triggers::Vector{ITrigger}: Strategies that are triggered upon experiencing symptoms
      • testtypes::Vector{AbstractTestType}: Test types used in the model (e.g. Antigen Tests)
      • total_quarantines::Int64: Total person-ticks (e.g. days) spent in isolation
      • total_tests::Dict{Any, Any}: Total number of performed tests per TestType
      • detection_rate::Float64: Fraction of detected infections (by testing)
    • system_data::Dict{String, Any}

      • kernel::String: System kernel
      • julia_version::String: Julia version that was used to generate this data object
      • word_size::Int64: System word size
      • threads::Int64: Number of threads this Julia instance was started with
      • cpu_data::Markdown.MD: Information on the processor (not available for ARM Macs)
      • total_mem_size::Float64: Total system memory
      • free_mem_size::Float64: Available system memory
      • git_repo::SubString{String}: Current Git repository
      • git_branch::SubString{String}: Current Git branch
      • git_commit::SubString{String}: Current Git commit ID
      • model_size::Int64: Size of the simulation model in memory [CURRENTLY DACTIVATED]
      • population_size::Int64: Size of the population model in memory [CURRENTLY DACTIVATED]
    • setting_age_contacts::Dict{String, Any}

      • Household: age X age contact matrix for Households based on sampled data [CURRENTLY DACTIVATED]
      • GlobalSetting: age X age contact matrix for GlobalSettings based on sampled data [CURRENTLY DACTIVATED]
    • aggregated_setting_age_contacts::Dict{String, Any}

      • Household::ContactMatrix{Float64}: age group x age group "ContactMatrix" object for Households based on sampled data
      • SchoolClass::ContactMatrix{Float64}: age group x age group "ContactMatrix" object for SchoolClass based on sampled data
      • School::ContactMatrix{Float64}: age group x age group "ContactMatrix" object for School based on sampled data
      • SchoolComplex::ContactMatrix{Float64}: age group x age group "ContactMatrix" object for SchoolComplex based on sampled data
      • Office::ContactMatrix{Float64}: age group x age group "ContactMatrix" object for Office based on sampled data
      • Department::ContactMatrix{Float64}: age group x age group "ContactMatrix" object for Department based on sampled data
      • Workplace::ContactMatrix{Float64}: age group x age group "ContactMatrix" object for Workplace based on sampled data
      • WorkplaceSite::ContactMatrix{Float64}: age group x age group "ContactMatrix" object for WorkplaceSite based on sampled data
      • Municipality::ContactMatrix{Float64}: age group x age group "ContactMatrix" object for Municipality based on sampled data
      • GlobalSetting::ContactMatrix{Float64}: age group x age group "ContactMatrix" object for GlobalSetting based on sampled data
    • dataframes::Dict{String, Any}

      • infections::DataFrame: Infection data joined with individuals' attributes
      • vaccinations::DataFrame: Vaccination data joined with individuals' attributes
      • deaths::DataFrame: Death data joined with individuals' attributes
      • tests::DataFrame: Test data joined with individuals' attributes
      • effectiveR::DataFrame: Effective R value over time
      • compartment_periods::DataFrame: Duration of exposed and infectious states for all infections
      • aggregated_compartment_periods::DataFrame: Statistics on time individuals spend in each disease compartment
      • tick_cases::DataFrame: Infections per tick
      • tick_deaths::DataFrame: Deaths per tick
      • tick_vaccinations::DataFrame: Vaccinations per tick
      • tick_serial_intervals::DataFrame: Aggregated data on serial intervals per tick
      • tick_generation_times::DataFrame: Aggregated data on generation timess per tick
      • tick_tests::DataFrame: Number of tests performed per tick
      • tick_pooltests::DataFrame: Number of (pooled) tests per tick
      • tick_cases_per_setting::DataFrame: Tick cases aggregated by settingtype,
      • detected_tick_cases::DataFrame: Number of detected infections per tick
      • compartment_fill::DataFrame: Number of individuals currently in any of the disease compartments
      • cumulative_cases::DataFrame: Cumulative infections over time
      • cumulative_deaths::DataFrame: Cumulative deaths over time
      • cumulative_vaccinations::DataFrame: Cumulative vaccinations over time
      • cumulative_disease_progressions::DataFrame: Cumulative information on disease states N ticks after exposure
      • cumulative_quarantines::DataFrame: Number of quarantined individuals per tick
      • age_incidence::DataFrame: Incidence over time stratified by age groups
      • population_pyramid::DataFrame: Data required to plot population pyramid (age, sex, count)
      • rolling_observed_SI::DataFrame: Serial interval estimation based on the last 14 days of detected cases
      • observed_R::DataFrame: Reproduction number estimation based on detected cases and the SI estimation
      • tick_hosptitalizations::DataFrame: DataFrame containing the daily hospitalizations etc.
      • time_to_detection::DataFrame: Statistics on the time between exposure and first detection of an infection through a test
      • household_attack_rates::DataFrame: Statistics on the seconary infections in households
      • customlogger::DataFrame: Dataframe obtained from any custom logger that might have been set
GEMS.LightRDType
LightRD <: ResultDataStyle

Similar to the default style for ResultData objects but without any raw data (e.g. the ìnfections-, deaths- or tests- dataframes) as the raw data makes around 80% of the DefaultResultData style memory footprint. It contains everything that can currently be calculated in the PostProcessor.

This RD-style cannot be used to generate geographical maps or infection videos.

Fields

  • data::Dict{String, Any}: Dictionary holding the following sub-dictionaries

    • meta_data::Dict{String, Any}

      • timer_output::TimerOutput: TimerOutput object

      (Note: This data is only available if the simulation runs were done via the main() function)

      • execution_date::String: Time this ResultData object was generated
      • GEMS_version::VersionNumber: GEMS version this ResultData object was generated with
      • config_file::String: Path to the config file
      • config_file_val::Dict{String, Any}: Deep copy of the supplied TOML config file
      • population_file::String: Path to the population file
      • population_params::Dict{String, Any}: Parameters used to generate population
    • sim_data::Dict{String, Any}

      • label::String: Label of this simulation run (needed for plotting)
      • final_tick::Int16: Tick counter at the end of the simulation run
      • number_of_individuals::Int64: Total number of individuals in the population model
      • initial_infections::Int64: Number of initial infected individuals
      • total_infections::Int64: Row count of the PostProcessor's infections DataFrame
      • attack_rate::Float64: Fraction of overall infected individuals
      • setting_data::DataFrame: DataFrame containing information on all setting types
      • setting_sizes::Dict{Any, Any}: Dictionary containing the setting sizes distributions for all included settingtypes
      • region_info::Dataframe: Municipality population size and area (if geolocalized model is used)
      • pathogens::Vector{Pathogen}: Array of pathogen parameters
      • tick_unit::String: Unit of time that one tick corresponds to
      • start_condition::StartCondition: Initial setup of the simulation
      • stop_criterion::StopCriterion: Termination conditions
      • strategies::Vector{Strategy}: Intervention strategies
      • symptom_triggers::Vector{ITrigger}: Strategies that are triggered upon experiencing symptoms
      • testtypes::Vector{AbstractTestType}: Test types used in the model (e.g. Antigen Tests)
      • total_quarantines::Int64: Total person-ticks (e.g. days) spent in isolation
      • total_tests::Dict{Any, Any}: Total number of performed tests per TestType
      • detection_rate::Float64: Fraction of detected infections (by testing)
    • system_data::Dict{String, Any}

      • kernel::String: System kernel
      • julia_version::String: Julia version that was used to generate this data object
      • word_size::Int64: System word size
      • threads::Int64: Number of threads this Julia instance was started with
      • cpu_data::Markdown.MD: Information on the processor (not available for ARM Macs)
      • total_mem_size::Float64: Total system memory
      • free_mem_size::Float64: Available system memory
      • git_repo::SubString{String}: Current Git repository
      • git_branch::SubString{String}: Current Git branch
      • git_commit::SubString{String}: Current Git commit ID
      • model_size::Int64: Size of the simulation model in memory [CURRENTLY DACTIVATED]
      • population_size::Int64: Size of the population model in memory [CURRENTLY DACTIVATED]
    • aggregated_setting_age_contacts::Dict{String, Any}

      • Household::ContactMatrix{Float64}: age group x age group "ContactMatrix" object for Households based on sampled data
      • SchoolClass::ContactMatrix{Float64}: age group x age group "ContactMatrix" object for SchoolClass based on sampled data
      • School::ContactMatrix{Float64}: age group x age group "ContactMatrix" object for School based on sampled data
      • SchoolComplex::ContactMatrix{Float64}: age group x age group "ContactMatrix" object for SchoolComplex based on sampled data
      • Office::ContactMatrix{Float64}: age group x age group "ContactMatrix" object for Office based on sampled data
      • Department::ContactMatrix{Float64}: age group x age group "ContactMatrix" object for Department based on sampled data
      • Workplace::ContactMatrix{Float64}: age group x age group "ContactMatrix" object for Workplace based on sampled data
      • WorkplaceSite::ContactMatrix{Float64}: age group x age group "ContactMatrix" object for WorkplaceSite based on sampled data
      • Municipality::ContactMatrix{Float64}: age group x age group "ContactMatrix" object for Municipality based on sampled data
      • GlobalSetting::ContactMatrix{Float64}: age group x age group "ContactMatrix" object for GlobalSetting based on sampled data
    • dataframes::Dict{String, Any}

      • effectiveR::DataFrame: Effective R value over time
      • tick_cases::DataFrame: Infections per tick
      • tick_deaths::DataFrame: Deaths per tick
      • tick_serial_intervals::DataFrame: Aggregated data on serial intervals per tick
      • tick_generation_times::DataFrame: Aggregated data on generation timess per tick
      • tick_tests::DataFrame: Number of tests performed per tick
      • tick_pooltests::DataFrame: Number of (pooled) tests per tick
      • tick_cases_per_setting::DataFrame: Tick cases aggregated by settingtype,
      • detected_tick_cases::DataFrame: Number of detected infections per tick
      • compartment_fill::DataFrame: Number of individuals currently in any of the disease compartments
      • aggregated_compartment_periods::DataFrame: Statistics on time individuals spend in each disease compartment
      • cumulative_cases::DataFrame: Cumulative infections over time
      • cumulative_deaths::DataFrame: Cumulative deaths over time
      • cumulative_disease_progressions::DataFrame: Cumulative information on disease states N ticks after exposure
      • cumulative_quarantines::DataFrame: Number of quarantined individuals per tick
      • age_incidence::DataFrame: Incidence over time stratified by age groups
      • population_pyramid::DataFrame: Data required to plot population pyramid (age, sex, count)
      • rolling_observed_SI::DataFrame: Serial interval estimation based on the last 14 days of detected cases
      • observed_R::DataFrame: Reproduction number estimation based on detected cases and the SI estimation
      • tick_hosptitalizations::DataFrame: DataFrame containing the daily hospitalizations etc.
      • time_to_detection::DataFrame: Statistics on the time between exposure and first detection of an infection through a test
      • household_attack_rates::DataFrame: Statistics on the seconary infections in households
      • customlogger::DataFrame: Dataframe obtained from any custom logger that might have been set