Result data
Overview Structs
GEMS.DefaultResultData
GEMS.LightRD
GEMS.ResultData
GEMS.ResultData
GEMS.ResultData
GEMS.ResultData
GEMS.ResultData
GEMS.ResultDataStyle
Overview Functions
GEMS.GEMS_version
GEMS.aggregated_compartment_periods
GEMS.allempty
GEMS.attack_rate
GEMS.compartment_fill
GEMS.compartment_periods
GEMS.config_file
GEMS.config_file_val
GEMS.cpu_data
GEMS.cumulative_cases
GEMS.cumulative_deaths
GEMS.cumulative_disease_progressions
GEMS.cumulative_quarantines
GEMS.cumulative_vaccinations
GEMS.customlogger
GEMS.data_hash
GEMS.dataframes
GEMS.deaths
GEMS.detected_tick_cases
GEMS.detection_rate
GEMS.effectiveR
GEMS.execution_date
GEMS.execution_date_formatted
GEMS.exportJLD
GEMS.final_tick
GEMS.free_mem_size
GEMS.git_branch
GEMS.git_commit
GEMS.git_repo
GEMS.hashes
GEMS.household_attack_rates
GEMS.id
GEMS.import_resultdata
GEMS.infections
GEMS.infections_hash
GEMS.info
GEMS.initial_infections
GEMS.julia_version
GEMS.kernel
GEMS.label
GEMS.meta_data
GEMS.model_size
GEMS.number_of_individuals
GEMS.observed_R
GEMS.pathogens
GEMS.population_file
GEMS.population_params
GEMS.population_pyramid
GEMS.population_size
GEMS.region_info
GEMS.rolling_observed_SI
GEMS.setting_data
GEMS.setting_sizes
GEMS.sim_data
GEMS.someempty
GEMS.start_condition
GEMS.stop_criterion
GEMS.strategies
GEMS.symptom_triggers
GEMS.system_data
GEMS.tests
GEMS.testtypes
GEMS.threads
GEMS.tick_cases
GEMS.tick_cases_per_setting
GEMS.tick_deaths
GEMS.tick_generation_times
GEMS.tick_hosptitalizations
GEMS.tick_pooltests
GEMS.tick_serial_intervals
GEMS.tick_tests
GEMS.tick_unit
GEMS.tick_vaccinations
GEMS.time_to_detection
GEMS.timer_output
GEMS.timer_output!
GEMS.total_infections
GEMS.total_mem_size
GEMS.total_quarantines
GEMS.total_tests
GEMS.word_size
ResultData
Constructors
GEMS.ResultData
— MethodResultData(sim::Simulation; style::String = "")
Create a ResultData
object using a Simulation
and the name of a ResultDataStyle
, that describes the level of detail for the fields to be calculated. This constructor instantiates a default PostProcessor
for the passed simulation object. If you want to manually configure the PostProcessor
, you need to instantiate it first and pass the PostProcessor
to the ResultData
constructor instead. Post Processing requires a simulation to be done.
GEMS.ResultData
— MethodResultData(postProcessor::PostProcessor; style::String="")
Create a ResultData
object using a PostProcessor
and a key, that describes the level of detail for the fields to be calculated. Post Processing requires a simulation to be done.
GEMS.ResultData
— MethodResultData(postProcessors::Vector{PostProcessor}; style::String="", print_infos::Bool = false)
Create a vector ResultData
objects using a vector of associated PostProcessor
objects and a key, that describes the level of detail for the fields to be calculated. Post Processing requires a simulation to be done. It supresses the usual info outputs that are being made during the ResultData
generation. If you want to enable them, pass print_infos = true
.
GEMS.ResultData
— MethodResultData(sim::Vector{Simulation}; style::String = "", print_infos::Bool = false)
Create a vector ResultData
objects using a vector of Simulation
objects and the name of a ResultDataStyle
, that describes the level of detail for the fields to be calculated. If you want to manually configure the PostProcessor
, you need to instantiate it first and pass the PostProcessor
to the ResultData
constructor instead. Post Processing requires a simulation to be done. It supresses the usual info outputs that are being made during the ResultData
generation. If you want to enable them, pass print_infos = true
.
GEMS.ResultData
— MethodResultData(batch::Batch; style::String = "", print_infos::Bool = false)
Create a vector ResultData
objects using a Batch
object and the name of a ResultDataStyle
, that describes the level of detail for the fields to be calculated. If you want to manually configure the PostProcessor
s, you need to instantiate them first and pass the PostProcessor
s to the ResultData
constructor instead. Post Processing requires a simulation to be done. It supresses the usual info outputs that are being made during the ResultData
generation. If you want to enable them, pass print_infos = true
.
Functions
GEMS.aggregated_compartment_periods
— Functionaggregated_compartment_periods(rd::ResultData)
Returns the DataFrame with disease state durations (normalized). Look up the PostProcessor
docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.allempty
— Functionallempty(f::Function, rds::Vector{ResultData})
Returns true
if the provided function returns an empty dictionary for all ResultData
objects in the provided vector.
GEMS.attack_rate
— Methodattack_rate(rd::ResultData)
Returns the simulation's attack rate. It's total infections divided by population size. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.compartment_fill
— Methodcompartment_fill(rd::ResultData)
Returns the compartment_fill infections over time. Look up the PostProcessor
docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.compartment_periods
— Methodcompartment_periods(rd::ResultData)
Returns the DataFrame with duration of exposed and infectious states for all infections. Look up the PostProcessor
docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.config_file
— Methodconfig_file(rd::ResultData)
Returns the path to the config file
GEMS.config_file_val
— Functionconfig_file_val(rd::ResultData)
Returns the parsed config file. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.cpu_data
— Methodcpu_data(rd::ResultData)
Returns the processor information (not available for ARM Macs)
GEMS.cumulative_cases
— Methodcumulative_cases(rd::ResultData)
Returns the cumulative infections over time. Look up the PostProcessor
docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.cumulative_deaths
— Methodcumulative_deaths(rd::ResultData)
Returns the cumulative deaths over time. Look up the PostProcessor
docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.cumulative_disease_progressions
— Methodcumulative_disease_progressions(rd::ResultData)
Returns the DataFrame with cumultive number of individuals in certain disease states per tick. Look up the PostProcessor
docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.cumulative_quarantines
— Methodcumulative_quarantines(rd::ResultData)
Returns the DataFrame with number of isolated individuals per tick Look up the PostProcessor
docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.cumulative_vaccinations
— Methodcumulative_vaccinations(rd::ResultData)
Returns the cumulative vaccinations over time. Look up the PostProcessor
docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.customlogger
— Methodcustomlogger(rd::ResultData)
Returns the DataFrame of the Simulation
object's internal custom logger. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.data_hash
— Methoddata_hash(rd::ResultData)
Returns a SHA1
hash value for the ResultData
object.
GEMS.dataframes
— Methoddataframes(rd::ResultData)
Returns the dataframes of result data. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.deaths
— Methoddeaths(rd::ResultData)
Returns the deaths DataFrame joined with individuals' attributes. Look up the PostProcessor
docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.detected_tick_cases
— Methoddetected_tick_cases(rd::ResultData)
Returns the detected cases per tick DataFrame. Look up the PostProcessor
docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.detection_rate
— Methoddetection_rate(rd::ResultData)
Returns the fraction of detected infections. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.effectiveR
— MethodeffectiveR(rd::ResultData)
Returns the Effective R value over time DataFrame. Look up the PostProcessor
docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.execution_date
— Methodexecution_date(rd::ResultData)
Returns the timestamp of result data generation. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.execution_date_formatted
— Functionexecution_date_formatted(rd::ResultData)
Returns the (formatted for report) timestamp of result data generation. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.exportJLD
— MethodexportJLD(rd::ResultData, directory::AbstractString)
Exports the ResultData
object as a JLD2 file, storing it in the specified directory
.
GEMS.final_tick
— Methodfinal_tick(rd::ResultData)
Returns the tick counter at the end of the simulation run. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.free_mem_size
— Methodfree_mem_size(rd::ResultData)
Returns the available system memory
GEMS.GEMS_version
— MethodGEMS_version(rd::ResultData)
Returns the GEMS version this ResultData object was generated with. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.git_branch
— Methodgit_branch(rd::ResultData)
Returns the current git branch.
GEMS.git_commit
— Methodgit_commit(rd::ResultData)
Returns the current git commit.
GEMS.git_repo
— Methodgit_repo(rd::ResultData)
Returns the current git repository.
GEMS.hashes
— Methodhashes(rd::ResultData)
Returns the dataframes of result data. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.tick_hosptitalizations
— Methodtick_hosptitalizations(rd::ResultData)
Returns the tests per tick DataFrame. Look up the PostProcessor
docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.household_attack_rates
— Methodhousehold_attack_rates(rd::ResultData)
Returns householdattackrates DataFrame. Look up the PostProcessor
docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.id
— Methodid(rd::ResultData)
Returns the unique identifer of the ResultData
object.
GEMS.import_resultdata
— Functionimport_resultdata(filepath::String)
Import the ResultData
object from a jld2 file. Returns the ResultData
object.
import_resultdata(filepath::String, config::Dict=Dict())
Import the ResultData
object from a jld2 file. Also accepts a config dictionary that includes the fields that should be obtained from the file. If there are fields in the config file that are not yet present in the ResultData
object the creation of these fields is being attempted. If there are fields present in the ResultData
object that are not in the config file, these fields are ommited. Providing an empty config dictionary will lead to the generation of all fields.
GEMS.infections
— Methodinfections(rd::ResultData)
Returns the infection DataFrame joined with individuals' attributes. Look up the PostProcessor
docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.infections_hash
— Methodinfections_hash(rd::ResultData)
Returns a SHA1
hash value for the infections
DataFrame based on the tick
, id_a
, and id_b
column. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.info
— Methodinfo(rd::ResultData)
Prints info about available fields in the ResultData
object.
GEMS.initial_infections
— Methodinitial_infections(rd::ResultData)
Returns the number of individuals who are marked as infected during initialization. This happens before the actual simulation run. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.julia_version
— Methodjulia_version(rd::ResultData)
Returns the Julia version that was used to generate this result data object. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.kernel
— Methodkernel(rd::ResultData)
Returns the system kernel information Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.label
— Methodlabel(rd::ResultData)
Returns the lable of the simulation run. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.meta_data
— Methodmeta_data(rd::ResultData)
Returns the meta_data
dictionary of the ResultData
. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.model_size
— Methodmodel_size(rd::ResultData)
Returns the size of the simulation model in memory.
GEMS.number_of_individuals
— Methodnumber_of_individuals(rd::ResultData)
Returns the total number of individuals in the population model. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.observed_R
— Methodobserved_R(rd::ResultData)
Returns the observed reproduction number estimation DataFrame. Look up the PostProcessor
docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.pathogens
— Methodpathogens(rd::ResultData)
Returns an array of pathogen parameters. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.population_file
— Methodpopulation_file(rd::ResultData)
Returns the path to the population file Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.population_params
— Methodpopulation_params(rd::ResultData)
Returns parameters that were used to generate the population. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.population_pyramid
— Methodpopulation_pyramid(rd::ResultData)
Returns the DataFrame required to plot population pyramid (age, sex, count) Look up the PostProcessor
docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.population_size
— Methodpopulation_size(rd::ResultData)
Returns the size of the population model in memory.
GEMS.region_info
— Methodregion_info(rd::ResultData)
Returns a Dataframe with population size and area per municiaplity (if model is geolocalized). Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.rolling_observed_SI
— Methodrolling_observed_SI(rd::ResultData)
Returns the rolling observed serial interval DataFrame. Look up the PostProcessor
docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.setting_data
— Methodsetting_data(rd::ResultData)
Returns a DataFrame containing information on all setting types. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.setting_sizes
— Methodsetting_sizes(rd::ResultData)
Returns a Dictionary containing information on all setting sizes. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.sim_data
— Methodsim_data(rd::ResultData)
Returns the sim_data of result data. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.someempty
— Functionsomeempty(f::Function, rds::Vector{ResultData})
Returns true
if the provided function returns an empty dictionary for at least one of the ResultData
objects.
GEMS.start_condition
— Methodstart_condition(rd::ResultData)
Returns the StartCondition
object the simulation was initialized with. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.stop_criterion
— Methodstop_criterion(rd::ResultData)
Returns the StopCriterion
object of the simulation. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.strategies
— Methodstrategies(rd::ResultData)
Returns the strategies included in the simulation. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.symptom_triggers
— Methodsymptom_triggers(rd::ResultData)
Returns the symptom triggers included in the simulation. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.system_data
— Methodsystem_data(rd::ResultData)
Returns the system_data of result data. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.tests
— Methodtests(rd::ResultData)
Returns the tests DataFrame . Look up the PostProcessor
docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.testtypes
— Methodtesttypes(rd::ResultData)
Returns the test types included in the simulation. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.threads
— Methodthreads(rd::ResultData)
Returns the number of threads this Julia instance was started with.
GEMS.tick_cases
— Methodtick_cases(rd::ResultData)
Returns the infections per tick DataFrame. Look up the PostProcessor
docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.tick_cases_per_setting
— Methodtick_cases_per_setting(rd::ResultData)
Returns the tests per tick DataFrame. Look up the PostProcessor
docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.tick_deaths
— Methodtick_deaths(rd::ResultData)
Returns the deaths per tick DataFrame. Look up the PostProcessor
docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.tick_generation_times
— Methodtick_generation_times(rd::ResultData)
Returns the generation times per tick DataFrame. Look up the PostProcessor
docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.tick_pooltests
— Methodtick_pooltests(rd::ResultData)
Returns the pool tests per tick DataFrame. Look up the PostProcessor
docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.tick_serial_intervals
— Methodtick_serial_intervals(rd::ResultData)
Returns the serial intervals per tick DataFrame. Look up the PostProcessor
docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.tick_tests
— Methodtick_tests(rd::ResultData)
Returns the tests per tick DataFrame. Look up the PostProcessor
docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.tick_unit
— Methodtick_unit(rd::ResultData)
Returns the unit of time that one tick corresponds to. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.tick_vaccinations
— Methodtick_vaccinations(rd::ResultData)
Returns the vaccinations per tick DataFrame. Look up the PostProcessor
docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.time_to_detection
— Methodtime_to_detection(rd::ResultData)
Returns time to detection DataFrame. Look up the PostProcessor
docs to find the column definitions. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.timer_output!
— Methodtimer_output!(rd::ResultData, timer_output::TimerOutput)
Sets the TimerOutput
object for a ResultData
object
GEMS.timer_output
— Methodtimer_output(rd::ResultData)
Returns the TimerOutput
object used to supply debug report with execution time information Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.total_infections
— Methodtotal_infections(rd::ResultData)
Returns the row count of the PostProcessors' infections
-DataFrame. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.total_mem_size
— Methodtotal_mem_size(rd::ResultData)
Returns the total system memory
GEMS.total_quarantines
— Methodtotal_quarantines(rd::ResultData)
Returns the total quarantined agent over the course of the simulation. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.total_tests
— Methodtotal_tests(rd::ResultData)
Returns a dictionary with the the total number of tests per TestType. Returns an empty dictionary if the data is not available in the input ResultData
object.
GEMS.word_size
— Methodword_size(rd::ResultData)
Returns the system word size.
ResultDataStyle
Constructors
GEMS.ResultDataStyle
— TypeResultDataStyle
Abstract type, whose implementations define the structure of a ResutltData
object.
GEMS.DefaultResultData
— TypeDefaultResultData <: ResultDataStyle
The default style for ResultData
objects. It contains all that can currently be calculated in the PostProcessor
. Therefore, it is both, the most comprehensive and computationally intensive (memory & runtime) option.
Fields
data::Dict{String, Any}
:meta_data::Dict{String, Any}
timer_output::TimerOutput
: TimerOutput objectexecution_date::String
: Time this ResultData object was generatedGEMS_version::VersionNumber
: GEMS version this ResultData object was generated withconfig_file::String
: Path to the config fileconfig_file_val::Dict{String, Any}
: Deep copy of the supplied TOML config filepopulation_file::String
: Path to the population filepopulation_params::Dict{String, Any}
: Parameters used to generate population
sim_data::Dict{String, Any}
label::String
: Label of this simulation run (needed for plotting)final_tick::Int16
: Tick counter at the end of the simulation runnumber_of_individuals::Int64
: Total number of individuals in the population modelinitial_infections::Int64
: Number of initial infected individualstotal_infections::Int64
: Row count of the PostProcessor'sinfections
DataFrameattack_rate::Float64
: Fraction of overall infected individualssetting_data::DataFrame
: DataFrame containing information on all setting typessetting_sizes::Dict{Any, Any}
: Dictionary containing the setting sizes distributions for all included settingtypesregion_info::Dataframe
: Municipality population size and area (if geolocalized model is used)pathogens::Vector{Pathogen}
: Array of pathogen parametersvaccine::Vaccine
: Vaccine parameter [CURRENTLY DEACTIVATED]vaccination_strategy::VaccineScheduler
: Vaccination strategy used in this model [CURRENTLY DEACTIVATED]tick_unit::String
: Unit of time that one tick corresponds tostart_condition::StartCondition
: Initial setup of the simulationstop_criterion::StopCriterion
: Termination conditionsstrategies::Vector{Strategy}
: Intervention strategiessymptom_triggers::Vector{ITrigger}
: Strategies that are triggered upon experiencing symptomstesttypes::Vector{AbstractTestType}
: Test types used in the model (e.g. Antigen Tests)total_quarantines::Int64
: Total person-ticks (e.g. days) spent in isolationtotal_tests::Dict{Any, Any}
: Total number of performed tests per TestTypedetection_rate::Float64
: Fraction of detected infections (by testing)
system_data::Dict{String, Any}
kernel::String
: System kerneljulia_version::String
: Julia version that was used to generate this data objectword_size::Int64
: System word sizethreads::Int64
: Number of threads this Julia instance was started withcpu_data::Markdown.MD
: Information on the processor (not available for ARM Macs)total_mem_size::Float64
: Total system memoryfree_mem_size::Float64
: Available system memorygit_repo::SubString{String}
: Current Git repositorygit_branch::SubString{String}
: Current Git branchgit_commit::SubString{String}
: Current Git commit IDmodel_size::Int64
: Size of the simulation model in memory [CURRENTLY DACTIVATED]population_size::Int64
: Size of the population model in memory [CURRENTLY DACTIVATED]
setting_age_contacts::Dict{String, Any}
Household
: age X age contact matrix for Households based on sampled data [CURRENTLY DACTIVATED]GlobalSetting
: age X age contact matrix for GlobalSettings based on sampled data [CURRENTLY DACTIVATED]
aggregated_setting_age_contacts::Dict{String, Any}
Household::ContactMatrix{Float64}
:age group
xage group
"ContactMatrix" object for Households based on sampled dataSchoolClass::ContactMatrix{Float64}
:age group
xage group
"ContactMatrix" object for SchoolClass based on sampled dataSchool::ContactMatrix{Float64}
:age group
xage group
"ContactMatrix" object for School based on sampled dataSchoolComplex::ContactMatrix{Float64}
:age group
xage group
"ContactMatrix" object for SchoolComplex based on sampled dataOffice::ContactMatrix{Float64}
:age group
xage group
"ContactMatrix" object for Office based on sampled dataDepartment::ContactMatrix{Float64}
:age group
xage group
"ContactMatrix" object for Department based on sampled dataWorkplace::ContactMatrix{Float64}
:age group
xage group
"ContactMatrix" object for Workplace based on sampled dataWorkplaceSite::ContactMatrix{Float64}
:age group
xage group
"ContactMatrix" object for WorkplaceSite based on sampled dataMunicipality::ContactMatrix{Float64}
:age group
xage group
"ContactMatrix" object for Municipality based on sampled dataGlobalSetting::ContactMatrix{Float64}
:age group
xage group
"ContactMatrix" object for GlobalSetting based on sampled data
dataframes::Dict{String, Any}
infections::DataFrame
: Infection data joined with individuals' attributesvaccinations::DataFrame
: Vaccination data joined with individuals' attributesdeaths::DataFrame
: Death data joined with individuals' attributestests::DataFrame
: Test data joined with individuals' attributeseffectiveR::DataFrame
: Effective R value over timecompartment_periods::DataFrame
: Duration of exposed and infectious states for all infectionsaggregated_compartment_periods::DataFrame
: Statistics on time individuals spend in each disease compartmenttick_cases::DataFrame
: Infections per ticktick_deaths::DataFrame
: Deaths per ticktick_vaccinations::DataFrame
: Vaccinations per ticktick_serial_intervals::DataFrame
: Aggregated data on serial intervals per ticktick_generation_times::DataFrame
: Aggregated data on generation timess per ticktick_tests::DataFrame
: Number of tests performed per ticktick_pooltests::DataFrame
: Number of (pooled) tests per ticktick_cases_per_setting::DataFrame
: Tick cases aggregated by settingtype,detected_tick_cases::DataFrame
: Number of detected infections per tickcompartment_fill::DataFrame
: Number of individuals currently in any of the disease compartmentscumulative_cases::DataFrame
: Cumulative infections over timecumulative_deaths::DataFrame
: Cumulative deaths over timecumulative_vaccinations::DataFrame
: Cumulative vaccinations over timecumulative_disease_progressions::DataFrame
: Cumulative information on disease states N ticks after exposurecumulative_quarantines::DataFrame
: Number of quarantined individuals per tickage_incidence::DataFrame
: Incidence over time stratified by age groupspopulation_pyramid::DataFrame
: Data required to plot population pyramid (age, sex, count)rolling_observed_SI::DataFrame
: Serial interval estimation based on the last 14 days of detected casesobserved_R::DataFrame
: Reproduction number estimation based on detected cases and the SI estimationtick_hosptitalizations::DataFrame
: DataFrame containing the daily hospitalizations etc.time_to_detection::DataFrame
: Statistics on the time between exposure and first detection of an infection through a testhousehold_attack_rates::DataFrame
: Statistics on the seconary infections in householdscustomlogger::DataFrame
: Dataframe obtained from any custom logger that might have been set
GEMS.LightRD
— TypeLightRD <: ResultDataStyle
Similar to the default style for ResultData
objects but without any raw data (e.g. the ìnfections
-, deaths
- or tests
- dataframes) as the raw data makes around 80% of the DefaultResultData
style memory footprint. It contains everything that can currently be calculated in the PostProcessor
.
This RD-style cannot be used to generate geographical maps or infection videos.
Fields
data::Dict{String, Any}
: Dictionary holding the following sub-dictionariesmeta_data::Dict{String, Any}
timer_output::TimerOutput
: TimerOutput object
(Note: This data is only available if the simulation runs were done via the
main()
function)execution_date::String
: Time this ResultData object was generatedGEMS_version::VersionNumber
: GEMS version this ResultData object was generated withconfig_file::String
: Path to the config fileconfig_file_val::Dict{String, Any}
: Deep copy of the supplied TOML config filepopulation_file::String
: Path to the population filepopulation_params::Dict{String, Any}
: Parameters used to generate population
sim_data::Dict{String, Any}
label::String
: Label of this simulation run (needed for plotting)final_tick::Int16
: Tick counter at the end of the simulation runnumber_of_individuals::Int64
: Total number of individuals in the population modelinitial_infections::Int64
: Number of initial infected individualstotal_infections::Int64
: Row count of the PostProcessor'sinfections
DataFrameattack_rate::Float64
: Fraction of overall infected individualssetting_data::DataFrame
: DataFrame containing information on all setting typessetting_sizes::Dict{Any, Any}
: Dictionary containing the setting sizes distributions for all included settingtypesregion_info::Dataframe
: Municipality population size and area (if geolocalized model is used)pathogens::Vector{Pathogen}
: Array of pathogen parameterstick_unit::String
: Unit of time that one tick corresponds tostart_condition::StartCondition
: Initial setup of the simulationstop_criterion::StopCriterion
: Termination conditionsstrategies::Vector{Strategy}
: Intervention strategiessymptom_triggers::Vector{ITrigger}
: Strategies that are triggered upon experiencing symptomstesttypes::Vector{AbstractTestType}
: Test types used in the model (e.g. Antigen Tests)total_quarantines::Int64
: Total person-ticks (e.g. days) spent in isolationtotal_tests::Dict{Any, Any}
: Total number of performed tests per TestTypedetection_rate::Float64
: Fraction of detected infections (by testing)
system_data::Dict{String, Any}
kernel::String
: System kerneljulia_version::String
: Julia version that was used to generate this data objectword_size::Int64
: System word sizethreads::Int64
: Number of threads this Julia instance was started withcpu_data::Markdown.MD
: Information on the processor (not available for ARM Macs)total_mem_size::Float64
: Total system memoryfree_mem_size::Float64
: Available system memorygit_repo::SubString{String}
: Current Git repositorygit_branch::SubString{String}
: Current Git branchgit_commit::SubString{String}
: Current Git commit IDmodel_size::Int64
: Size of the simulation model in memory [CURRENTLY DACTIVATED]population_size::Int64
: Size of the population model in memory [CURRENTLY DACTIVATED]
aggregated_setting_age_contacts::Dict{String, Any}
Household::ContactMatrix{Float64}
:age group
xage group
"ContactMatrix" object for Households based on sampled dataSchoolClass::ContactMatrix{Float64}
:age group
xage group
"ContactMatrix" object for SchoolClass based on sampled dataSchool::ContactMatrix{Float64}
:age group
xage group
"ContactMatrix" object for School based on sampled dataSchoolComplex::ContactMatrix{Float64}
:age group
xage group
"ContactMatrix" object for SchoolComplex based on sampled dataOffice::ContactMatrix{Float64}
:age group
xage group
"ContactMatrix" object for Office based on sampled dataDepartment::ContactMatrix{Float64}
:age group
xage group
"ContactMatrix" object for Department based on sampled dataWorkplace::ContactMatrix{Float64}
:age group
xage group
"ContactMatrix" object for Workplace based on sampled dataWorkplaceSite::ContactMatrix{Float64}
:age group
xage group
"ContactMatrix" object for WorkplaceSite based on sampled dataMunicipality::ContactMatrix{Float64}
:age group
xage group
"ContactMatrix" object for Municipality based on sampled dataGlobalSetting::ContactMatrix{Float64}
:age group
xage group
"ContactMatrix" object for GlobalSetting based on sampled data
dataframes::Dict{String, Any}
effectiveR::DataFrame
: Effective R value over timetick_cases::DataFrame
: Infections per ticktick_deaths::DataFrame
: Deaths per ticktick_serial_intervals::DataFrame
: Aggregated data on serial intervals per ticktick_generation_times::DataFrame
: Aggregated data on generation timess per ticktick_tests::DataFrame
: Number of tests performed per ticktick_pooltests::DataFrame
: Number of (pooled) tests per ticktick_cases_per_setting::DataFrame
: Tick cases aggregated by settingtype,detected_tick_cases::DataFrame
: Number of detected infections per tickcompartment_fill::DataFrame
: Number of individuals currently in any of the disease compartmentsaggregated_compartment_periods::DataFrame
: Statistics on time individuals spend in each disease compartmentcumulative_cases::DataFrame
: Cumulative infections over timecumulative_deaths::DataFrame
: Cumulative deaths over timecumulative_disease_progressions::DataFrame
: Cumulative information on disease states N ticks after exposurecumulative_quarantines::DataFrame
: Number of quarantined individuals per tickage_incidence::DataFrame
: Incidence over time stratified by age groupspopulation_pyramid::DataFrame
: Data required to plot population pyramid (age, sex, count)rolling_observed_SI::DataFrame
: Serial interval estimation based on the last 14 days of detected casesobserved_R::DataFrame
: Reproduction number estimation based on detected cases and the SI estimationtick_hosptitalizations::DataFrame
: DataFrame containing the daily hospitalizations etc.time_to_detection::DataFrame
: Statistics on the time between exposure and first detection of an infection through a testhousehold_attack_rates::DataFrame
: Statistics on the seconary infections in householdscustomlogger::DataFrame
: Dataframe obtained from any custom logger that might have been set